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Personalized whole-brain neural mass
models reveal combined Aβ and tau
hyperexcitable influences in Alzheimer’s
disease
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Neuronal dysfunction and cognitive deterioration in Alzheimer’s disease (AD) are likely caused by
multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce,
requiring improved non-invasive techniques and integrative models. We introduce personalized AD
computational models built on whole-brainWilson-Cowan oscillators and incorporating resting-state
functional MRI, amyloid-β (Aβ) and tau-PET from 132 individuals in the AD spectrum to evaluate the
direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers
key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment
and neuronal excitability increases with disease progression. The data-derived neuronal excitability
values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231,
p-tau181, GFAP) and grey matter atrophy obtained through voxel-basedmorphometry. Furthermore,
reconstructed EEGproxy quantities show the hallmarkADelectrophysiological alterations (theta band
activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau
involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to
neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes.
Mechanistic brain activity models can further clarify intricate neurodegenerative processes and
accelerate preventive/treatment interventions.

Alzheimer’s disease (AD) is defined by synaptic and neuronal degen-
eration and loss accompanied by amyloid beta (Aβ) plaques and tau
neurofibrillary tangles (NFTs)1–3. In vivo animal experiments indicate
that both Aβ and tau pathologies synergistically interact to impair neu-
ronal circuits4. For example, the hypersynchronous epileptiform activity
observed in over 60% of AD cases5 may be generated by surrounding Aβ
and/or tau deposition yielding neuronal network hyperactivity5,6. Cortical
and hippocampal network hyperexcitability precedes memory impair-
ment in AD models7,8. In an apparent feedback loop, endogenous neu-
ronal activity, in turn, regulates Aβ aggregation, in both animal models

and computational simulations9,10. Multiple other factors involved in AD
pathogenesis -remarkably, neuroinflammatory dysregulations- also see-
mingly influence neuronal firing and act on hypo/hyperexcitation
patterns11–13. Thus, mounting evidence suggest that neuronal excitability
changes are a key mechanistic event appearing early in AD and a ten-
tative therapeutic target to reverse disease symptoms3,4,7,14. However, the
exact patterns of Aβ, tau and other disease factors’ neuronal activity
alterations in AD’s neurodegenerative progression are unclear as in vivo
and non-invasive measuring of neuronal excitability in human subjects
remains impractical.

A full list of affiliations appears at the end of the paper. e-mail: yasser.iturriamedina@mcgill.ca
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Brain imaging and electrophysiological monitoring constitute a reli-
able readout for brain network degeneration likely associating with AD’s
neuro-functional alterations3,15–18. Patients present distinct resting-state
blood-oxygen-level-dependent (BOLD) signal content in the low frequency
fluctuations range (0.01–0.08Hz)16,19. These differences increase with dis-
ease progression, from cognitively unimpaired (CU) controls to mild cog-
nitive impairment (MCI) to AD, correlating with performance on cognitive
tests16. Another characteristic functional change is the slowingof the electro-
(magneto-) encephalogram (E/MEG), with the signal shifting towards low
frequency bands15,18. Electrophysiological spectral changes associate with
brain atrophy and with losing connections to hub regions including the
hippocampus, occipital and posterior areas of the default mode network20.
All these damages are known to occur in parallel with cognitive
impairment20. Disease processes also manifest differently given subject-
specific genetic and environmental conditions1,21. Models of multiple
pathological markers and physiology represent a promising avenue for
revealing the connection between individual AD fingerprints and cognitive
deficits3,18,22.

In effect, large-scale neuronal dynamical models of brain re-
organization have been used to test disease-specific hypotheses by focus-
ing on the corresponding causal mechanisms23–25. By considering brain
topology (the structural connectome18) and regional profiles of a patholo-
gical agent24, it is possible to recreate how a disorder develops, providing
supportive or conflicting evidence on the validity of a hypothesis23. Gen-
erativemodels follow average activity in relatively large groups of excitatory
and inhibitory neurons (neural masses), with large-scale interactions gen-
erating E/MEG signals and/or functional MRI observations26. Through
neural mass modeling, personalized virtual brains were built to describe Aβ
pathology effects on AD-related EEG slowing25 and several hypotheses for
neuronal hyperactivation have been tested27. Simulated resting-state func-
tional MRI across the AD spectrum was used to estimate biophysical
parameters associated with cognitive deterioration28. In addition, different
intervention strategies to counter neuronal hyperactivity in AD have been
tested10,22. Notably, comprehensive computational approaches combining
pathophysiological patterns and functional network alterations allow the

quantification of non-observable biological parameters29 like neuronal
excitability values in a subject-specific basis1,3,18,21,23,24, facilitating the design
of personalized treatments targeting the root cause(s) of functional
alterations in AD.

Here, we develop a personalized whole-brain neural mass model
integrating multilevel, multifactorial AD pathophysiological profiles to
clarify their causal impact on neuronal activity alterations. Using individual
in vivo functional MRI together with Aβ- and tau- positron emission
tomography (PET), we infer and quantify the combined influence of these
proteinopathies on human neuronal excitability. Additionally, we investi-
gate the associations between the obtained subject-specific pathophysiolo-
gical neuronal activity affectations and clinically applicable blood-plasma
biomarkers (p-tau217, p-tau231, p-tau181, glial fibrillary acidic protein),
gray matter atrophy, as well as cognitive integrity measured in the same
patient cohort. Finally, we identify the critical toxic protein accumulation
stages that typically accompanyhallmarkADelectrophysiological (E/MEG)
alterations. Overall, our results expand previous understandings of neuro-
pathological impact on AD, namely the emergence of neuronal
hyperactivity3,4,7,14, slowing of the E/MEG signals15,18 and the existence of
synergisticmultifactorial interactions1,4. These findings support the premise
of using integrative neuralmassmodels to decodemultilevelmechanisms in
complex neurological disorders.

Results
Inferring pathophysiological impacts on whole-brain neuronal
activity
Figure 1 presents the proposed personalized generative framework to study
the combined pathophysiological effect of Aβ and tau on neuronal activity
(see Methods). Cognitively unimpaired, mild cognitive impairment and
Alzheimer’s disease participants (N = 132, Supplementary Table 1) under-
went structural and resting-state functional MRI and Aβ (18F-NAV4694)-,
tau (18F-MK-6240)- and microglial activation (11C-PBR28)-PET. Indivi-
duals were also cognitively profiled and had measures of plasma p-tau and
glial fibrillary acidic protein (GFAP). From the fMRI signals, regional
fractional amplitudes of low-frequency fluctuations (fALFF) values were

Fig. 1 | Schematic AD personalized pathophysiological whole-brain models.
a Individuals underwent a multimodal assessment including structural and resting-
state functional MRI, Aβ and tau-PET, clinically relevant plasma biomarkers, and
cognitive evaluations. b In the Alzheimer’s disease model, the subject’s neuronal
excitability profile is defined as a function ofAβ, tau and the synergistic interaction of
Aβ and tau. Regional excitatory and inhibitory firing rates are influenced by the local
pathophysiological profiles and the signals coming fromother regions via an average
anatomical connectome. The regional neuronal signals generate BOLD indicators

through metabolic/hemodynamic transformations. By maximizing the similarity
between the generated andobservedBOLDdata, the set of subject-specific influences
of the pathophysiological Aβ, tau and Aβ·tau factors on neuronal activity are
quantified. c These estimated pathophysiological influences serve to recover elec-
trophysiological activity producing the real individual BOLD signals, and to study
individual excitability profiles and their relationship with independent AD (plasma)
markers and cognitive deterioration. Volumetric brain views in the figure were
generated with SurfStat (https://www.math.mcgill.ca/keith/surfstat/).
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obtained for 66 bilateral regions of interest (DKT parcellation30), a measure
consistently identified as a reliable neuronal activity biomarker of AD’s
progression1,16,19 and compatible with structurally-defined brain
parcellations31. We assume that at each brain region, the excitability prop-
erties of the excitatory neuronal populations are potentiallymediated by the
local pathophysiological burden, i.e., the participant’s PET-measured
accumulation of Aβ plaques, tau tangles and the combined Aβ and tau
deposition (their synergistic interaction, Aβ·tau)3–7,22. Neuronal activities
generated in this manner via interconnectedWilson–Cowan oscillators32–36

are transformed into BOLD signals by a hemodynamic-metabolic module.
Lastly, the individualmodel parameters quantifying the brain-wide subject-
specific influence of each neuropathological factor (or their synergistic
interaction) on neuronal excitability are identified by retaining the set
maximizing the similarity between the simulated BOLD data and the sub-
ject’s real BOLD indicators.

In Supplementary Fig. 1, we report the obtained likely Aβ, tau and
Aβ·tau relative contributions for all participants. The contributions of
each factor to the estimated neuronal excitability are subject-dependent
but different trends exist within the clinical groups. For example, 13 out
16 AD participants (81.3%) had an estimated Aβ effect favoring hyper-
excitation –disregarding the magnitude–, 10 (62.5%) had hyperexcitable
tau influences, and 9 (56.3%), Aβ·tau. In the CU group, the majority of
subjects also had hyperexcitable Aβ effects (71.6%), while hypoexcitable
tau and Aβ·tau contributions were predominant (59.3% and 54.3%,
respectively). The average correlation between observed fALFF markers
and the best-fit in silico analogous quantities was 0.44 across participants
(standard deviation = 0.10). For all regions and subjects (8712 data
points), real and in silico neuronal activity indicators generated through
our pathological influence model follow a linear relationship (Supple-
mentary Fig. 2).

Subsequently, we investigated the pathophysiologicalmechanisms that
give rise to the observed impacts on neuronal activity. We performed sta-
tistical tests on several quantities of interest that were computed after
individual parameter identificationwith the goal of better understandingAβ
and tau’s combined neuronal activity effects across the AD spectrum. The
participants were, for statistical analysis, separated into groups (Supple-
mentary Table 2) according to their clinical diagnosis (CU, MCI, AD) and
Aβ-positivity or in vivo Braak staging37,38. In the next subsections, we study
reconstructed hidden electrophysiological signals, neuronal excitability
spatial profiles, and additive relationships with plasma biomarkers and
cognitive integrity.

Reproducing hallmark electrophysiological alterations in AD
progression
A desired attribute of biologically-defined modeling tools in clinical appli-
cations is to reproduce and mechanistically clarify reported pathophysio-
logical observations. Through the inferred pathophysiological influence
parameters, we reconstructed proxy quantities for electro-(magneto)ence-
phalographic (E/MEG) sources in each brain region and subject (E/MEGs
were not recorded for participants in theTRIADcohort).We testedwhether
the AD pathophysiological whole-brain estimations recreated reported
spectral changes in AD, i.e., increases of theta band power (4–8Hz) and
decreases of power in the lower alpha band (alpha1, 8–10Hz)15,18,22, as the
disease progresses. Among the quantities contributing to the E/MEGmodel
output, we also closely studied excitatory firings and changes to their
magnitude given the influence of the toxic protein depositions.

We observed that the standardized ratio of power in the theta band
(4–8Hz) was higher for Aβ+ groups than for Aβ- (Fig. 2a and Supple-
mentary Table 3). Conversely, the alpha1 power (8–10Hz) decreased with
Aβ-positivity. Finally, the average excitatoryfiringswere generally higher for

Fig. 2 | Behavior of the inferred electrophysiological quantities of interest with
Aβ and tau deposition levels. From left to right: ratio of power in the theta band
(4–8 Hz) of the regional excitatory input currents (the E/MEG is proportional to the
excitatory input current), ratio of power in the alpha1 band (8–10 Hz) and mean
excitatory firings (over all regions and time points). Each of the quantities was
standardized using themean and standard deviation fromall subjects, for visualizing
general trends. Participants were then grouped according to clinical diagnosis and
Aβ-positivity (a) and Braak stages (b). In the box-and-whisker plot, the central lines

indicate the groupmedians, with the bottom and top edges of each box denoting the
25th and 75th percentiles, respectively. Whiskers extend to the maximum and
minimum values while data points that are deemed outliers for the group are plotted
individually with circles. The results of ANCOVA post-hoc t-tests for the above-
mentioned groups, with the corresponding electrophysiological quantity as response
variable and age and sex as covariates are also shown. * represents significance level
p < 0.05, ** means significance level p < 0.01 and *** is p < 0.001.
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Aβ+ subjects. Similar results were observed across Braak stages (Fig. 2b).
Differences in all, theta and alpha1power andmean excitatory activity, were
observed for subjects in Braak 0 (non-significant tau neurofibrillary tangle
involvement) and the advanced limbic (Braak III-IV) and isocortical stages
(Braak V-VI) and, furthermore, for Braak I-II (transentorhinal) and Braak
V-VI subjects.

Theestimatedneuronalexcitabilities increasewithclinical states
and disease progression
Seeking to find mechanisms underlying the observed electrophysiological
patterns, we studied the biophysical quantity that is influenced by the
pathophysiological factors in our model: neuronal excitability. Figure 3 and
Supplementary Fig. 3 show excitability values for all brain regions of interest
and subjects. The combined action of the pathological factors either
increases (“hyper”) or decreases (“hypo”) regional excitability around a
certain baseline normal value.

We found significant differences of neuronal excitability due to Aβ
positivity and Braak stages. Firstly, we observed significant discrimination
between all Aβ- and Aβ+ groups (Fig. 3), i.e.: CU(Aβ−) and CU(Aβ+),
MCI(Aβ+), AD(Aβ+) (p < 0.001, sex and age adjusted); MCI(Aβ−) and
CU(Aβ+), MCI(Aβ+), AD(Aβ+) (p < 0.05, sex and age adjusted). Addi-
tionally, we discovered similar differences between Braak 0 participants and
those in all later stages, and for Braak I-II, and Braak V-VI (Supplementary
Fig. 3). Subjects in advanced disease stages generally presented hyper-
excitability profiles, whilemost of theAβ- andBraak 0, I-II participantswere
largely characterized by a slight hypoexcitability.

Neuronal hyperexcitability relates to high levels of plasma AD
biomarkers and gray matter atrophy
We proceeded to investigate the relationship between the obtained indivi-
dual excitability values and biomarkers of AD-associated

neurodegeneration. We utilized blood biomarkers of AD pathophysiology,
which constitute accessible alternatives to neuroimaging indicators39–42 and
brain tissue atrophy assessed via voxel-basedmorphometry (VBM)41,43. The
analyses sought to determine if the results of the computational estimations
aligned with independent measurements for neurodegeneration that were
not considered in the participants’ whole-brain Aβ and tau effects models.

Figure 4a–d show the behavior of the average intra-brain excitabilities
with the plasma biomarkers p-tau181, p-tau231 and p-tau217 (phos-
phorylated tau indicators) andGFAP (ameasure of reactive astrogliosis and
neuronal damage42), respectively. In Fig. 4e, we examine the relationship
between average intra-brain excitabilities and VBM values, while Fig. 4f–h
present results of the correlation analyses at specific regions (para-
hippocampal gyrus, fusiform gyrus and amygdala) with consistent gray
matter alterations in AD based on VBM44, across all the subjects. The other
region-specific statistically significant results all appeared in areas with
documented reductions in gray matter volume (Supplementary Table 3),
including thehippocampus, entorhinal cortex andposterior cingulategyrus,
bilaterally44. Notably, we observed that high levels of the plasma biomarkers
and reduced gray matter volume significantly relate to the participants’
neuronal hyperactivation. Such subjects are typically Aβ- and tau-positive
(Supplementary Fig. 4), underscoring that themodel-obtained excitabilities
reflect Aβ and tau pathology together with generalized neurodegeneration.

Synergistic Aβ and tau interactions strongly relate to cognitive
performance
To conclude the post-hoc investigation of the relevant quantities identified
through theADpathophysiological neural activitymodels, we proceeded to
assess the pathophysiological factors’ effects on cognitive impairment. For
this purpose, we utilized the individual Aβ, tau and Aβ·tau weights con-
tributing to the obtained neuronal excitability (Supplementary Fig. 1) as
predictors in regression models with response variables MMSE andMoCA

Fig. 3 | Neuronal excitabilities under the influence ofAβ, tau andAβ·tau. Inferred
neuronal excitability values for the brain regions of interest (“y”-axis) and all subjects
(“x”-axis). Participants were grouped according to clinical diagnosis and Aβ-
positivity in this figure, to understand Aβ’s contribution to the individually esti-
mated biological profiles (see Supplementary Fig. 3 for tau’s effect). Within a group,
subjects appear according to their existing ordering in the anonymized database.

Warm colors represent hyperexcitability of the region in the subject’s brain and cool
colors denote hypoexcitable states (the color-bar extends to the extremes of the
optimization interval). Results of ANCOVA post-hoc t-tests for the above-
mentioned groups, with the average intra-brain excitability values as response
variable and age and sex as covariates appear in the upper right. P-values in bold
fonts represent differences at a 5% significance level or lower.

https://doi.org/10.1038/s42003-024-06217-2 Article

Communications Biology |           (2024) 7:528 4



scores, respectively, while adjusting for age, sex and education.We observed
(Table 1) that both Aβ’s solo influence on neuronal activity and the esti-
mated Aβ·tau synergistic interaction term were significant predictors of
MMSE andMoCA evaluations (p < 0.05). The coefficients of these terms in
the regression models were positive in all cases, namely, the lower the
pathophysiological influence parameter is, the lower the cognitive score.
Negative additive effects of the studied factors yield higher firing rates at a
given input current in our pathophysiological influence model (Methods,
Electrophysiological model). Thus, neuronal hyperexcitability seems to be
associated with cognitive deterioration, according to our calculations.

Discussion
We developed an integrative biophysical framework to map pathophysio-
logical influences on neuronal activity, with application toAD.Highly data-
driven models (not intended to replicate neuronal activity features) have
been used in the past to individually characterize multifactorial dynamic
interactions propagating through anatomical and vascular networks in the
AD spectrum1,17,45,46. On the other hand, mechanistic investigations have
assessed the emergence of pathological electrophysiological activity in
generative models that consider the influence of isolated biological fac-
tors, such as Aβ plaques25, tau tangles47 or in several possible AD synaptic
dysfunction scenarios10,22. Despite the high computational value of these
works, realistic biological information could have been estimated from
the data under certain constraints, to validate the mechanistic simula-
tions. A recent work by Ranasinghe et al. 48 obtained parameters in
computational models and correlated the results with Aβ and tau PET
SUVRs. Instead of assessing associations, we intended to characterize the
direct role that Aβ and tau have in the generation of pathological neu-
ronal activity in AD. In neural mass models, causal effects are straight-
forwardly measured by perturbing its relevant biophysical parameters
and observing the dynamical changes that occur to the neuronal signals
generated under the perturbation1,23,29,49. The subject-specific influences
by Aβ and tau (imaged through in vivo PET) on neuronal firing were
computationally identified from fMRI indicators in this work. Alto-
gether, we observed increased neuronal excitability with AD progression,
which also predicted increased plasma biomarkers concentrations,
accelerated gray matter atrophy and cognitive impairment.

Our findings confirm previous observations3–7,15 and cast new light on
pathological processes that are inaccessible to in vivo humanneuroimaging,
as relationships with neuronal excitability in AD. Through considering the
influence of multiple pathophysiological factors, we have retrieved the AD

electrophysiological hallmark: enhancement of theta band activity together
with alpha decreases, as disease progresses15,18, from BOLD signals. Our
results also indicate that CU(Aβ+) and/or Braak III-IV are the stages from
which these electrophysiological biomarkers become abnormal. These
groups contain subjects who are not cognitively impaired but present sig-
nificant Aβ deposition50 and/or have widespread temporal and parietal tau
aggregation detectable by tau PET38. A recent study, also on subjects from
the TRIAD cohort, found reduced, clinically significant delayed recall and
recognition memory tests performance at Braak III and IV stages as well51.
Additionally, multicenter research has shown that CU(Aβ+) subjects,
independently of tau status, present substantially increased risk of short-
term (3–5 years) conversion to mild cognitive impairment, compared to
CU(Aβ−)52. Our personalized estimations of the pathophysiological
impacts on neuronal activity reaffirm this evidence. Aβ+ and post-Braak II
individuals may be, on average, the most likely candidates to benefit from
early disease interventions modifying the cognitive decline that associates
with patho-electrophysiological activity15,18,20.

Although proxy measurements53, post-mortem studies14 and animal
models4 have suggested neuronal hyperactivity mechanisms in AD, no
direct quantification of in vivo neuronal excitability existed thus far in
humans. In this study, by assuming a toxic protein influencemodel (Aβ, tau,
Aβ·tau) we inferred neuronal excitability values from the individual PET-
functional MRI datasets. The progression towards hyperexcitation with
disease worsening was equally evident for a simplified pathophysiological
influence model with separate contributions by Aβ and tau only (Supple-
mentary Figs. 5 and 6). Increased excitability was also associated with high
levels of plasma biomarkers (blood phosphorylated tau and GFAP) which
are sensitive to incipient AD pathology40–42,54,55 and disease progression,
especially p-tau21739,40. Additionally, the obtained excitability values also
correlated with VBM measures –neuronal firing increases with decreased
gray matter volume, particularly at brain regions that most prominently
showcase neurodegeneration in AD44. Our correlation analyses of the
relationshipbetweenestimated excitability values in thewhole-brainmodels
and these independent AD biomarkers may suggest that functional read-
justments are attempted in parallel to Aβ and tau pathological spread and
the loss of neurons in the human brain. Finally, we also observed that the
more hyperactive the existing excitatory neuronal populations of a subject
were (i.e., presenting negative influence values of the significant factors in
our model), the greater the participant’s cognitive dysfunction, thus sup-
porting a direct link among neuronal excitability, pathophysiological bur-
den, and cognitive integrity.

Fig. 4 | Relationship between the inferred neuronal excitability values and
independent AD biomarkers. Spearman’s correlation analyses for the associations
between the participants’ estimated average intra-brain excitabilities and the plasma
biomarkers p-tau181 (a), p-tau231 (b), p-tau217 (c) and GFAP (d), and the average

gray matter volume measured via voxel-based morphometry (VBM) (e). The rela-
tionships between local excitability values and the regional volumes are shown for
the left amygdala (f), left parahippocampal gyrus (g), and right fusiform gyrus (h).
The error bands denote 95% confidence intervals.
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The above interpretation of the results in this article relies on the
assumptions of the pathophysiological influence model (see Eq. (1)) and
previous evidence of Aβ and tau’s effects in the AD brain. In our individual
dynamical models, the subject’s Aβ and tau accumulations are the sole
source of information and permitted influences on the generated neuronal
activities. We confirmed that data fitting by adding the individual Aβ, tau
and Aβ·tau brain maps (mean Akaike information criterion =−171.8
across subjects) outperformed the models without these variables (mean
Akaike information criterion =−169.4). In addition, Supplementary Fig. 7
shows the improvement in each participant’s model fit through the model
with Aβ, tau and Aβ·tau neuronal excitability parameters compared to the
simpler one with neuronal excitability not influenced by Aβ and tau. The
subjects’ F-statistics increase with Aβ- and tau-positivity and are significant
for 81.8% of the subjects (p < 0.05), with the remaining subjects being
predominantly Aβ− and/or Braak 0. This analysis further demonstrates the
fundamental contribution of Aβ and tau loads to explain neuro-functional
alterations observed inAD.Aβ and tau’s toxic accumulations are believed to
play key roles in the processes leading to neuronal degeneration and loss1–3.
Their respective progression patterns (measured in vivo by PET uptake) are
different, however, withAβplaques generalizing tomany cortical areas early
in the disease, while NFT spreading increases rapidly in temporal and
parietal regions only56. Previous research also suggested that Aβ-induced
hyperexcitability precluded tau accumulation57,58. AD participants, natu-
rally, present higher levels than their counterparts who are Aβ− and tau-
negative andmay not be diagnosed as such59. Based on these facts, onemay
explain why Aβ’s separate contribution and Aβ and tau’s synergistic
interaction –andnot tau alone, with lesswhole-brain involvement thanAβ–
were themost significant factors influencing aberrant neuronal activity and

cognitive symptomatology in our cohort (Table 1). Likewise, one would
have expected a certain separation of neuronal excitability according to Aβ
and tau statuses (Fig. 3, Supplementary Fig. 3). Existing computational
models that assume parameter perturbations by relevant factors as ser-
otonin receptor maps in neuropsychiatric disorders yield equivalent
results24. Our objective was to detect the trends in such possible separation
conditioned by the underlying Aβ and tau AD data and, by doing so, to
better characterize in vivo human disease mechanisms. Unequivocal evi-
dence across analyses indicates the existence of a significant neuronal
excitability (and functional) change in AD that relates to the disease’s
physical progression: the more pathology there is, the more the neuronal
populations fire.

Beyond AD-related protein deposition, our method can also investi-
gate the influence of other critical factors. It has been hypothesized, and to
some extent observed7,12,13, that microglial activation (a probable marker for
neuroinflammation60,61) affects excitability and neuronal activity in AD.
Consequently, we performed a set of complimentary experiments where we
recreated the obtained results in a model that also considers deviations to
neuronal excitability due to microglial activation –measured with 18kDa
Translocator Protein PET. Despite the slightly better fit in terms of
resembling the real resting state fMRI indicators (0.50 ± 0.07 vs 0.44 ± 0.10
correlation in themodel without themicroglial activation term), we did not
find substantial neuronal excitability or spectral electrophysiological
separationbetween clinical groupswhen themicroglial activation factorwas
considered, nor the estimations were confirmed by the participants’ plasma
and gray matter atrophy markers (Supplementary Figs. 8–10). Moreover,
the synergistic interaction of Aβ and tau was the factor that better predicted
cognitive impairment, with no significant effect by the microglial activation
term (Supplementary Table 4). We attribute these results to model over-
fitting and/or technical limitations associated with the acquisition of
microglial activation. Unlike the Aβ and tau PET SUVRs data, which
showed extended statistically significant differences across all brain regions
for CU andADparticipants (ANCOVApost-hoc t-tests with age and sex as
covariates, p < 0.05), microglial activation images exhibited differences in
only 30 regions (i.e., approx. 45%; Supplementary Table 5). Microglial
activation is thought to have aneuroprotective character (M2-phenotype) at
early disease stages12,13. On the other hand, excessive activation of microglia
seemingly becomes detrimental in clinicalAD (M1-phenotype) by releasing
pro-inflammatory cytokines that may exacerbate AD progression12,13,61.
Nevertheless, modern neuroinflammation PET tracers are not specific to
these two different phenotypes as no consistent targets have been
discovered13. Thus, our extended results albeit being relatively unin-
formative in terms of AD-affectations to neuronal excitability, capture
intrinsic microglial activation PET mapping insufficiencies60.

Our methodology also has limitations. Although we used state-of-the-
art fMRI experiments in this study (TR = 681ms, spatial
resolution = 2.5 × 2.5 × 2.5mm3), more detailed spatiotemporal dynamics
could be captured with novel ultra high-resolution functional imaging
techniques62. On the other hand, by using average anatomical connectivity,
we have singled-out themechanisms by which toxic protein deposition and
neuroinflammation are associated with pathological neuronal activity.
Personalized therapeutic interventions1 would require precise individual
profiles for increased efficiency. In such applications, including the con-
nectomes’ individual variability may be beneficial. Regarding the neuro-
physical model for the influence of pathophysiological factors, two aspects
should be considered in future work. Firstly, extending the intra-regional
neuronal interactionswith additional excitatory and inhibitory populations,
pursuing a finer descriptive scale, will also enable us to account for addi-
tional significant disease factors such as neuronal atrophy11. Secondly, the
effects on inhibitory firings should be explored separately as well. Pyramidal
(excitatory) neurons greatly outnumber any other neuronal population,
making them the most likely proteinopathies target3. However, inhibitory
populations are key in maintaining healthy firing balances3 and interacting
with glial cells63. To generate plausible signals and compare results across
participants/disease states, the individual calculations were run under equal

Table 1 | Multiple linear regression analysis investigating the
pathological effects on neuronal activity as predictors of
MMSE and MoCA scores

MMSE scores

β 95% CI of β t-Statistic p

Intercept 22.463 [15.591 29.335] 6.471 <0.001

θAβ 0.791 [0.092 1.489] 2.241 0.027

θTau 0.138 [−0.581 0.857] 0.378 0.705

θAβ Tau 1.040 [0.371 1.710] 3.077 0.002

Sex −1.505 [−2.872 −0.139] −2.180 0.031

Age 0.064 [−0.025 0.152] 1.426 0.156

Education 0.095 [−0.096 0.286] 0.987 0.326

MoCA scores

β 95% CI of β t-Statistic p

Intercept 18.702 [8.656 28.748] 3.686 <0.001

θAβ 1.598 [0.618 2.579] 3.229 0.002

θTau −0.020 [−0.973 0.932] −0.042 0.967

θAβ Tau 1.006 [0.009 2.004] 1.997 0.048

Sex −2.379 [−4.298 −0.460] −2.454 0.015

Age 0.096 [−0.034 0.226] 1.455 0.148

Education 0.046 [−0.222 0.314] 0.340 0.735

The influences of Aβ plaques (θAβ), tau tangles (θTau) and the interaction of Aβ and tau (θAβ∙Tau) on
neuronal activity, sex, age and education were considered as predictors. Reported values are
obtained coefficients (β), the 95% confidence intervals (CI) and the p-values for the t-statistic of the
two-sided hypothesis tests. MMSE: dfe = 123; R2 = 0.18, p < 0.001, normally distributed residuals
(two-sided one sample Kolmogorov–Smirnov test, p < 0.001), θAβCohen0s�d ¼ 0:202,
θTauCohen0s�d ¼ 0:034, θAβ�TauCohen0s�d ¼ 0:277; MoCA: dfe = 120; R2 = 0.19, p < 0.001, normally
distributed residuals (two-sided one sample Kolmogorov–Smirnov test, p < 0.001),
θAβCohen0s�d ¼ 0:295, θTauCohen0s�d ¼ �0:004, θAβ�TauCohen0s�d ¼ 0:182. The pairwise correlation
coefficients between the estimated neuronal activity influences were r θAβ; θTau

� � ¼ 0:35,
r θAβ ; θAβ�Tau
� � ¼ 0:23 and r θTau; θAβ�Tau

� � ¼ 0:19.
MMSEMini-Mental State examination,MoCA Montreal Cognitive Assessment.
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experimental conditions. These constraints yielded stringent parameter
optimization bounds ([−0.05, 0.05] for each pathophysiological influence
and their combined effect). It is possible that new optima existed outside of
these intervals in different conditions. Finally, the focus of this study was
limited to capturing abnormalities in AD by Aβ and tau’s combined action.
The model inputs will require modifications to measure neuronal excit-
ability contributions in other neurodegenerative conditions given their
characteristic neuropathological factors. For example, dopamine transpor-
ter (DaT) 123I–FP-CIT scans can be used to quantify dopaminergic defi-
ciency consistent with Parkinsonism and associated disorders64. Ongoing
efforts pursue developing alpha-synuclein protein PET radiotracers that do
not also bind to Aβ65. Replacing the AD- pathophysiology with such
quantified maps in our framework may well help advance the character-
ization of neuronal excitability dysfunction in the Parkinsonian circuit66.

The studywasundertakenwith several computational challenges. First,
the dynamical system is nonlinear and highly dimensional (660 variables,
for 66 regions). Simulations of such systems are time- and memory-
consuming. Parameter identification, in turn, is a much more complex
process as many simulations of the system are required as the optimization
algorithm evaluates possible solutions67. Although it would have been
exceptionally informative to obtain voxel-wise neuronal excitability per-
turbations by Aβ and tau, unfortunately such a task was computationally
prohibitive at the present. Inter-individual variability was lost by averaging
the pathology and brain function descriptors in relatively coarse brain
regions68. Furthermore, we selected a surrogate optimization algorithm for
its advantages to deal with intensive parameter identification problems67,
imposed constraints based on the biophysical properties of the model69 and
evaluated several random trial points samples for each subject, to increase
the chances offinding the global optima. These aidingmaneuvers camewith
additional cost, requiring the utilization of a computing cluster to perform
the optimizations in a reasonable time. On the other hand, the initial con-
ditions of generative neural models are generally unknown and were not
estimated in this work. To bypass related issues, the initial transient simu-
lation segments were dropped25,70, and the analyses focused on the com-
parison of the underlying parameters and signals, which were obtained by
assuming equal non-relevant parameters and minimizing an objective
function that was built with frequency-domain (fALFF) indicators1,16,19.
Finally, we must reiterate that fALFFs were preferred to construct the
optimization objective function over other widely-spread indicators as
functional connectivity due to their unambiguous and straightforward
definition in structural inter-connected regions (as opposed to functional
connectivity being strictly correct for functional parcellations only and
having a myriad of possibly informative –but not definitive– network and
node-specific features31,71), yet discriminating disease states from a func-
tional standpoint1,16,19.

Our approach has major implications to disease hypothesis testing.
Generative models23 in works by Iturria-Medina et al.1,17, Deco et al.24,72,
Sotero et al.18,70, de Haan et al.10,22 among others, focus on better compre-
hending neurological conditions. The models considered in the present
study reflect plausible biophysical mechanisms potentially determining
neuronal activity abnormalities in the AD spectrum3,4,7,12. Critical
mechanistic information on the underlying activity-generating processes
is obtained, as well as about their relationship with clinical and cognitive
profiles, as all these disease-informative variables are tracked in our
comprehensive methodology. A critical methodological contribution is
the capacity to resolve complex biological processes hidden to current
non-invasive imaging and electrophysiological monitoring techniques,
e.g., the neural masses’ firing excitabilities. For future work, we aim to
further clarify the specific molecular features responsible for the differ-
ences in excitability values across clinical stages. By doing so, we expect to
gain additional insights into AD pathophysiology that could boost
diagnostic accuracy and preclinical applications. This AD pathophysio-
logical model is equally applicable to other intricate multifactorial neu-
rological disorders by considering their relevant disease factors.
Computational disease modeling may further unveil the complex

mechanisms of neurodegeneration and aid providing efficient treatment
at a personalized level.

Methods
Participants
We selected individuals from the Translational Biomarkers in Aging and
Dementia (TRIAD) cohort (https://triad.tnl-mcgill.com/). The study was
approved by the McGill University PET Working Committee and the
Douglas Mental Institute Research Ethics Boards and all participants gave
informed written consent. All ethical regulations relevant to human
research participants were followed. All subjects underwent T1-weighted
MRI, resting-state fMRI, Aβ (18F-NAV4694)-, tau (18F-MK-6240)- and
translocator proteinmicroglial activation (11C-PBR28)- PET scans, together
with a complete cognitive evaluation, including the Mini‐Mental State
Examination (MMSE) and the Montreal Cognitive Assessment (MoCA).
We chose baseline assessments in all cases. Only participants with “cogni-
tively unimpaired” (N = 81), “mild cognitive impairment” (N = 35), or
“Alzheimer’s disease” (N = 16) clinical and pathophysiological diagnoses
were considered73 (see also Supplementary Table 1).

Image processing
MRI. Brain structural T1-weighted 3D images were acquired for all
subjects on a 3T Siemens Magnetom scanner using a standard head coil.
T1 space sequence was performed in sagittal plane in 1 mm isotropic
resolution; TE = 2.96 ms, TR = 2300 ms, slice thickness = 1 mm, flip
angle = 9 deg, FOV = 256 mm, 192 slices per slab. The images were
processed following a standard voxel-based morphometry pipeline1,41,43,
including non-uniformity correction using the N3 algorithm and seg-
mentation into graymatter (GM), white matter (WM) and cerebrospinal
fluid probabilistic maps (SPM12, www.fil.ion.ucl.ac.uk/spm). Each GM
andWMmap was non-linearly registered (with modulation) to theMNI
space74 using theDARTEL tool75 and smoothed with aGaussian kernel of
full width half maximum (FWHM) of 8 mm41,43. All images were visually
inspected to ensure proper alignment to the MNI template. We selected
66 (bilateral) cortical regions in theDesikian–Killiany–Touriner (DKT)30

atlas (Supplementary Table 5). Subcortical regions, e.g., in the basal
ganglia, were not considered given their tendency to present PET off-
target binding76,77.

fMRI. The resting-state fMRI acquisition parameters were: Siemens
Magnetom Prisma, echo planar imaging, 860 time points, TR = 681ms,
TE = 32.0 ms, flip angle = 50 deg, number of slices = 54, slice thick-
ness = 2.5 mm, spatial resolution = 2.5 × 2.5 × 2.5 mm3, EPI factor = 88.
We applied a minimal preprocessing pipeline1 including motion cor-
rection and spatial normalization to the MNI space74 using the regis-
tration parameters obtained for the structural T1 image, and removal of
the linear trend.We calculated the fractional amplitude of low-frequency
fluctuations (fALFF)16, a regional proxy indicator for neuronal activity
that has shown high sensibility to disease progression. Briefly, we
transformed the signals for each voxel to the frequency domain and
computed the ratio of the power in the low-frequency range
(0.01–0.08 Hz) to that of the entire BOLD frequency range (0–0.25 Hz)
with code from the RESTplus toolbox78. The fALFF values were ulti-
mately averaged over the voxels according to their belonging to brain
regions.

Diffusion weighted MRI (DW-MRI). High angular resolution diffusion
imaging (HARDI) data was acquired forN = 128 cognitively unimpaired
subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(adni.loni.usc.edu). The authors obtained approval from the ADNI Data
Sharing and Publications Committee for data use and publication,
see documents http://adni.loni.usc.edu/wp-content/uploads/how_to_
apply/ADNI_Data_Use_Agreement.pdf and http://adni.loni.usc.edu/
wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf,
respectively. For each diffusion scan, 46 separate images were acquired,
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with 5 b0 images (no diffusion sensitization) and 41 diffusion-weighted
images (b = 1000 s/mm2). ADNI aligned all raw volumes to the average b0
image, corrected head motion and eddy current distortions. Region-to-
region anatomical connection density matrices were obtained using a
fully automated fiber tractography algorithm79 and intravoxel fiber dis-
tribution reconstruction80. For any subject and pair of regions k and l, the
∁lk measure (0≤ *lk ≤ 1; *lk ¼ *kl) reflects the fraction of the region’s
surface involved in the axonal connection with respect to the total surface
of both regions. More details can be found in a previous publication
where ADNI’s DW-MRI was utilized1. We averaged the ADNI subject-
specific connectivity matrices1,81 to utilize a single, representative ana-
tomical network across our calculations on the TRIAD dataset.

PET. Study participants had Aβ (18F-NAV4694), tau (18F-MK-6240) and
translocator protein microglial activation (11C-PBR28) PET imaging in a
Siemens high-resolution research tomograph. A bolus injection of
18F-NAV4694 was administered to each participant and brain PET imaging
scans were acquired approximately 40–70min post-injection. The images
were reconstructed using an ordered subset expectation maximization
(OSEM) algorithm on a 4D volume with three frames (3 × 600 s)50. 18F-MK-
6240 PET scans of 20min (4 × 300 s) were acquired at 90–110min after the
intravenous bolus injection of the radiotracer82. 11C-PBR28 images were
acquired at 60–90min after tracer injection and reconstructed using
the OSEM algorithm on a 4D volume with 6 frames (6 × 300 s)61. Images were
preprocessed according to four main steps83: 1) dynamic co-registration
(separate frames were co-registered to one another lessening the effects of
patient motion), 2) across time averaging, 3) re-sampling and reorientation
from native space to a standard voxel image grid space (“AC-PC” space), and
4) spatial smoothing to produce images of a uniform isotropic resolution of
8 mm FWHM. Using the linear and nonlinear registration parameters
obtained for the participants’ structural T1 images, all PET images were
spatially normalized to the MNI space. 18F-MK-6240 images were meninges-
striped in native space before performing any transformations tominimize the
influence of meningeal spillover. SUVR values for the DKT gray matter
regions were calculated using the cerebellar graymatter as the reference region.

The DKT atlas was separately used to define the ROIs for tau-PET
Braak stage-segmentation37,38 which consisted of: Braak I (pathology con-
fined to the transentorhinal region of the brain), Braak II (entorhinal and
hippocampus), Braak III (amygdala, parahippocampal gyrus, fusiform
gyrus and lingual gyrus), Braak IV (insula, inferior temporal, lateral tem-
poral, posterior cingulate and inferior parietal), Braak V (orbitofrontal,
superior temporal, inferior frontal, cuneus, anterior cingulate, supramar-
ginal gyrus, lateral occipital, precuneus, superior parietal, superior frontal
and rostromedial frontal) and BraakVI (paracentral, postcentral, precentral
and pericalcarine)84. All image processing was performed in MATLAB
2021b (TheMathWorks Inc., Natick, MA, USA) with the aid of the specific
tools and algorithms specified above.

Plasma biomarkers
Blood biomarkers were quantified with Single molecule array (Simoa)
assays (Quanterix, Billerica, MA). These measurements included tau
phosphorylated at threonine 181 (p-tau181)41, tau phosphorylated at
threonine 231 (p-tau231)40, tau phosphorylated at threonine 217 (p-
tau217)39,85 and glial fibrillary acidic protein (GFAP)42 and have been pre-
viously reported.

Personalized integrative AD neuronal activity model
Electrophysiological model. Following the specialized literature22,32–36,
we utilized coupled neural masses to model electrophysiological brain
activity (with personalized model corrections accounting for the patho-
physiological AD effects, see below). Neural masses represent the average
dynamic behavior of similar neurons within a given spatial domain, i.e.,
brain regions18,36,86. In the seminal Wilson–Cowan (WC) model36, exci-
tatory and inhibitory populations are locally coupled. These neuronal
populations are described by their firing rates, E(t) and I(t), respectively.

Additionally, the excitatory population is further stimulated by unspe-
cific local inputs (P) and cortico-cortical interactions with other WC
modules in the brain network (Supplementary Fig. 11a)33,34,70. In effect,
each l region influences the dynamics of the k region by the quantity
η
N *lkEl , where η is a global scaling coupling strength and N is the total
number of regions in our considered parcellation (N = 66). We per-
formed a dynamical system analysis34–36,86,87 and obtained P and η values
that simulate plausible electrophysiological oscillations and BOLD sig-
nals within the considered range of pathophysiological affectations
(Supplementary Fig. 12). All other model parameters were set at generic
WC values32–36,88 (Supplementary Table 6).

To investigate the in vivo neuronal excitability affectations by AD
pathophysiology3–7,22 in the human brain, perturbations to the model’s
excitability parameter by Aβ, tau and their synergistic interaction are
quantified, for each individual. In the neural mass framework, the inte-
gration of all inputs received by the neuronal population is achieved by
means of a sigmoidal activation function36, S xð Þ ¼ 1

1þexp �a x�θð Þ½ � � 1
1þexp aθ½ �,

where θ is the firing threshold and x is the input current (synthetic EEG
signals are proportional to the regional excitatory input current32). Com-
pared to “baseline” firings, regional excitability can be higher (hyperexcit-
ability) or lower (hypoexcitability) depending on whether the firing rate
function is shifted to lower or higher input current values, respectively
(Supplementary Fig. 11b)22,34. The neuralmasses’ activation functions (thus,
their firing properties) are determined by the threshold parameters. We
suppose that the effective regional firing threshold values are mediated by
the following disease factors: Aβ plaques (with a subject-specific contribu-

tion weight given by θAβj ), tau tangles (θTauj ) and the interaction of amyloid

and tau (θAβ�Tauj )3–7,22. Based on themuch larger excitatory prevalence in the

cortex3,14, we also assume that the regional excitability profiles are quantified
through the excitatory firing threshold (θE) only. The pathophysiological
effects are simplistically written as linear fluctuations from the normal
baseline value due to the participant’s regional accumulation of each AD-
relevant factor (Supplementary Fig. 11c), with each PETmodality’s SUVRs
normalized to the [0,1] interval (by dividing by the maximum value across
subjects and regions89, Supplementary Fig. 13), to preserve the dynamical
properties of the generated signals and compare values across subjects and
conditions:

θj;k ¼ θ0 þ θAβj � Aβk þ θTauj � Tauk þ θAβ�Tauj � Aβk � Tauk ð1Þ

where, as above, the indexkdenotes the brain region, and j is used to identify

the participant. A negative contribution by a factor (θAβj , θTauj or θAβ�Tauj )

means that the pathological accumulation of such a biomarker tends to
decrease the firing threshold thus yielding hyperexcitability. Given the
inverse relationship existing between firing thresholds and effective firing
rates22, we define excitability as 1/θj,k.

The evolution of the average firing rates E(t) and I(t) is given by the
following set of differential equations34–36:

_Ek ¼
1
τE

�Ek þ S xE;k
� �� �

ð2Þ

_Ik ¼
1
τI

�Ik þ S xI;k
� �� �

xE;k ¼ CEEEk � CIEIk þ P þ η

N

XN

l¼1;l≠k
*lkEl

xI;k ¼ CEIEk � CIIIk

where we have dropped the subject’s tag, j, for readability purposes. The
participant’s regional BOLD signals are consequently generated via a
metabolic and hemodynamicmodel (MHM) by Sotero et al.49,69,70,90. For the
sake of completeness, the corresponding transformations are provided
below. The specific parameter values and their interpretation can be found
in Supplementary Table 7 and the references therein.
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In the MHM, the total action potential arriving to the neuronal
populations from other local and external populations (S(xE,k) and S(xI,k))
reflect the role that excitatory and inhibitory activities play in generating the
BOLD signal70,91. All variables are normalized to baseline values. Thus, the

neuronal inputs in region k are computed as ξE;k ¼
SE;k
SE;k

0 and ξI;k ¼
SI;k
SI;k

0,

where the scaling constants denote values at rest49,69,70,90.
Changes in glucose consumption (gE,k and gI,k) are linked to the

excitatory and inhibitory inputs, specifically:

_gE;k ¼ zE;k

_zE;k ¼
�2
κE

zE;k �
1
κE

2
gE;k � 1

� �
þ hE

κE
ξE;k � 1
� �

_gI;k ¼ zI;k

_zI;k ¼
�2
κI

zI;k �
1
κI

2
gI;k � 1

� �
þ hI

κI
ξI;k � 1
� �

The metabolic rates of oxygen for excitatory (mE,k) and inhibitory
(mI,k) activities, and the total oxygen consumption, mk, are obtained from
the glucose variables:

mE;k tð Þ ¼ 2� x tð Þ
2� x0

gE;k tð Þ

mI;k tð Þ ¼ gI;k tð Þ

mk tð Þ ¼ γmE;k tð Þ þmI;k tð Þ
γþ 1

x tð Þ ¼ 1

1þ exp c d � gE;k tð Þ
� �h i

Next, CBF dynamics (fk) is modeled as follows92, assuming that CBF is
coupled to excitatory activity:

_f k ¼ yk

_yk ¼
�2
κf

yk �
1
κf

2
f k � 1
� �þ μ ξE;k � 1

� �

The outputs of the metabolic and vascular modules are converted to
normalized cerebral blood volume (bk) and deoxy-hemoglobin (qk) content
through the Balloon model93:

_bk ¼
1
κ0

f k � f out
� �

_qk ¼
1
κ0

mk � f out
qk
bk

� 	

f out ¼ bk
1
ζ

The BOLD signal is then obtained by using a linear observation
equation:

BOLDk tð Þ ¼ V0 a1 1� qk
� �� a2 1� bk

� �� �

where a1 ¼ 4:3ϒ0E0 � TE þ εr0E0 � TE and a2 ¼ εr0E0 � TE þ ε� 1 are
parameters that depend on the experimental conditions (field strength,
TE)24,94–96. The sets of equations above were solved, for each individual
dataset, with an explicit Runge-Kutta (4,5)method, ode45, as implemented
in MATLAB 2021b (The MathWorks Inc., Natick, MA, USA) and a
timestep of 0.001 s. The first 20 s of all simulations were discarded to avoid
transient behavior25,70.

Parameter estimation. The personalized estimation of the optimal

pathological influences set (θAβj ; θTauj ; θAβ�Tauj ) was performed via surro-

gate optimization (MATLAB 2021b’s surrogateopt). This parameter
optimization method performs few objective function evaluations hence
it is well-suited for computationally expensive cost functions as it is the
case of our high-dimensional BOLD-simulating dynamical system. For

each participant, we identified the set of parameters (θAβj ; θTauj ; θAβ�Tauj )

minimizing the correlation distance [1� corrðfALFFsimulated; fALFFrealÞ]
between the regional fALFF values of the in silico pathological BOLD
signals and the subject’s real BOLD indicators (Supplementary Fig. 11d).

The individual and combined effects of (θAβj ; θTauj ; θAβ�Tauj ) on regional

excitability (Eq. (1)) were constrained to [−0.05, 0.05] to preserve the
dynamical properties of the signals (see also Supplementary Fig. 12,
Supplementary Table 6) and to compare results across subjects and
disease states, as all Aβ and tau SUVRs were normalized to same interval.
Optimization iterations were performed until surrogateopt found a point
satisfying the constraints and too few new feasible points were found to
continue (exitflag = 3). This occurred in less than 2000 iterations for all
subjects. Several surrogate optimization random trial points initializa-
tions were run for each subject (20 series of evaluated points or more, see
below). The global optimum was selected as the parameter set with the
smallest objective function value amongst all runs for the participant, as it
is unlikely to obtain a perfect similarity (correlation distance = 0) in a
problem with real data. All optimizations run in the platforms of the
Digital Research Alliance of Canada due to their high computational
requirements. Around 10% of the subjects were arbitrarily chosen and
had 20 additional random trial points surrogateopt evaluations in a
desktop computer, all producing the previously identified

(θAβj ; θTauj ; θAβ�Tauj ) set for the given participant.

Interpreting the pathophysiological effects on neuronal activity. The
obtained pathological influences (θAβj ; θTauj ; θAβ�Tauj ) describe subject-
specific interactions determining brain activity. We use these weights to
reconstruct otherwise hidden electrophysiological quantities of interest.
Individual neuronal excitability patterns22 are mapped through Eq. (1)
and can be related to separate measurements like plasma biomarkers for
AD40–42. Grand average excitatory activities are found by averaging the
firing rates Ek(t) over the regions and time points22, for every subject.
Likewise, the excitatory input currents of Eq. (2) are used as proxy
measures for cortical sources of resting-state EEG32. We perform a Fast
Fourier Transformation power analysis of the neural masses’ signals and
obtain the relative power of the traditional rhythms, in particular: theta
(4–8 Hz) and alpha1 (8–10 Hz) frequency band oscillations22. Addi-
tionally, we investigate the relationship of the obtained pathophysiolo-
gical influences with cognition97,98.

Statistics and reproducibility
Clinical diagnosis and PET-imaging Aβ status (determined visually by
consensus of two neurologists blinded to the diagnosis) were used to divide
the cohort for analyses of the results. Separately, we employed another
division based on the conventional unambiguous Braak grouping38 of I-II
(transentorhinal stages), III–IV (limbic) and V–VI (isocortical), to assess
trends in terms of intracellular tau neurofibrillary changes (see also
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Supplementary Tables 2 and 3). Group-differences in the electro-
physiological quantities of interest (average intra-brain theta and alpha1
power, excitatory firing activity and excitability) were evaluated with
ANCOVApost-hoc t-tests, i.e., we looked at the effects of the clinical groups
and Aβ positivity/Braak stages on the corresponding quantity, accounting
for age and sex. The average theta and alpha1 power and excitatory firing
activity were box-cox and z-score transformed across subjects. The asso-
ciations between excitability and plasma biomarkers/gray matter atrophy
were tested using Spearman’s Rho correlation (large-sample approxima-
tion). In addition, to assess the relationship between the pathophysiological
factors and cognitive integrity we fitted multiple linear regression models
using the following specifications: MMSE score∼ 1þ θAβ þ θTau þ
θAβ�Tau þ sex þ ageþ education and MoCA score∼ 1þ θAβ þ θTau þ
θAβ�Tau þ sex þ ageþ education. Each of the pathophysiological neuronal
activity effects were standardized using the mean and standard deviation
from all subjects. Statistical model comparison (baseline excitability vs
regional Aβ, tau and Aβ·tau influences on excitability) accounting for the
difference in model size was evaluated via subject-specific F-tests (dfe1 = 65
and dfe2 = 62). Additionally, the Akaike information criterion was calcu-
lated as AICj ¼ N � ln½RSSjN � þ 2 � dfe, where N = 66 and RSSj is the residual
sum of squares for each subject j under a given model.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The main source data supporting the findings of this study are available by
submitting a data share request via https://triad.tnl-mcgill.com/contact-us/.
All the data collectedunder theTRIADcohort is governedby the policies set
by the Research Ethics BoardOffice of theMcGill University,Montreal and
the Douglas Research Center, Verdun. Other data and sources are available
from the corresponding author on reasonable request. The source data
behind the graphs in the paper can be found in Supplementary Data 1.

Code availability
The code utilized in this article for the neuronal activity simulations and
quantification of the pathological effects can be accessed at the Neu-
roinformatics for Personalized Medicine lab’s website (NeuroPM, https://
www.neuropm-lab.com/publication-codes.html) and is freely available and
documented on the Zenodo repository99. The algorithm is detailed in
Supplementary Note 1.
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